(G,x) polynomial and (G) index of Armchair Polyhex Nanotubes TUAC6[m,n]
نویسنده
چکیده
Let G be a simple connected graph with the vertex set V = V(G) and the edge set E = E(G), without loops and multiple edges. For counting qoc strips in G, Omega polynomial was introduced by Diudea and was defined as Ω(G,x ) = ( , ). , c c m G c x where m(G,c) be the number of qoc strips of length c in the graph G. Following Omega polynomial, the Sadhana polynomial was defined by Ashrafi et al as Sd(G,x) = ( ) ( , ) . E G c c m G c x In this paper we compute the Pi polynomial (G,x) = ( ) ( , ). . E G c c m G c c x and Pi index (G ) = ( , ) ( ) c c m G c E G c of an infinite class of “Armchair Polyhex Nanotubes TUAC6[m,n]”.
منابع مشابه
Topological relationship between electric quadrupole, hexadecapole moments, energy and Padmakar–Ivan index in armchair polyhex nanotubes TUVC6[2p,q]
The electric quadrupole, hexadecapole moments, energy (kJmol -1) for some armchair polyhex carbon nanotubes TUVC6[2p,q] are performed by Beck-Lee-Yang-Parr [B3LYP] on 3-21G basis set using the standard procedure indices GAUSSIAN 98, then the Padmakar-Ivan (PI) index of TUVC6[2p,q] nanotubes in the terms of their circumference (2p) and lengh (q) is calculated and the relationships between the Pa...
متن کاملHosoya polynomial of zigzag polyhex nanotorus
Abstract: The Hosoya polynomial of a molecular graph G is defined as ∑ ⊆ = ) ( } , { ) , ( ) , ( G V v u v u d G H λ λ , where d(u,v) is the distance between vertices u and v. The first derivative of H(G,λ) at λ = 1 is equal to the Wiener index of G, defined as ∑ ⊆ = ) ( } , { ) , ( ) ( G V v u v u d G W . The second derivative of ) , ( 2 1 λ λ G H at λ = 1 is equal to the hyper-Wiener index, d...
متن کاملThe Degree Distance of Armchair Polyhex Nanotubes
The degree distance of a graph which is a degree analogue of the Wiener index of the graph. Let G = TUV C6[2p, q] be the carbon nanotubes covered by C6, formulas for calculating the degree distance of armchair polyhex nanotubes TUV C6[2p, q] are provided. Mathematics Subject Classification: 05C05, 05C12
متن کاملSchultz Index of Armchair Polyhex Nanotubes
The study of topological indices - graph invariants that can be used for describing and predicting physicochemical or pharmacological properties of organic compounds - is currently one of the most active research fields in chemical graph theory. In this paper we study the Schultz index and find a relation with the Wiener index of the armchair polyhex nanotubes TUV C(6)[2p; q]. An exact expressi...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کامل